On the Statistical Equivalence at Suitable Frequencies of GARCH and Stochastic Volatility Models with the Corresponding Diffusion Model

نویسندگان

  • Lawrence D. Brown
  • Yazhen Wang
  • Linda H. Zhao
چکیده

Continuous-time models play a central role in the modern theoretical finance literature, while discrete-time models are often used in the empirical finance literature. The continuous-time models are diffusions governed by stochastic differential equations. Most of the discrete-time models are autoregressive conditionally heteroscedastic (ARCH) models and stochastic volatility (SV) models. The discrete-time models are often regarded as discrete approximations of diffusions because the discrete-time processes weakly converge to the diffusions. It is known that SV models and multiplicative GARCH models share the same diffusion limits in a weak-convergence sense. Here we investigate a much stronger convergence notion. We show that SV models are asymptotically equivalent to their diffusion limits at the basic frequency of their construction, while multiplicative GARCH models match to the diffusion limits only for observations singled-out at frequencies lower than the square root of the basic frequency of construction. These results also reveal that the structure of the multiplicative GARCH models at frequencies lower than the square root of the basic frequency no longer obey the GARCH framework at the observed frequencies. Instead they behave there like the SV models. AMS 1991 Subject Classification. Primary: 62B15. Secondary: 90A09, 90A20, 90A16, 62M99.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Gold Volatility: Realized GARCH Approach

F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...

متن کامل

The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility

I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...

متن کامل

Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models

Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...

متن کامل

Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market

Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...

متن کامل

مدل‌سازی و پیش‌بینی نوسانات بازار سهام با استفاده از مدل انتقالی گارچ مارکف

  In this study we compare a set of Markov Regime-Switching GARCH models in terms of their ability to forecast the Tehran stock market volatility at different time intervals. SW-GARCH models have been used to avoid the excessive persistence that usually found in GARCH models. In SW-GARCH models all parameters are allowed to switch between a low or high volatility regimes. Both Gaussian and fat-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003